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Electrostatic beam modes in a free-electron laser with a coaxial wiggler
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An analysis of the propagation of an electrostatic beam space-charge wave through a coaxial wiggler
magnetic field and an axial-guide magnetic field is presented. Equations for the electron orbital velocity, rate
of change of axial velocity with Lorentz factor, and the dispersion relation are derived. The effects of the
combined wiggler and axial-guide fields on the rate of change of the axial velocity with electron energy and on
the effective electron density in the dispersion relation are studied numerically. The present theory predicts that
electrostatic negative mass instabilities do not exist in a coaxial wigg&n63-651X98)03802-1

PACS numbsd(s): 41.60.Cr, 52.75.Ms

I. INTRODUCTION component with the Lorentz factor are derived. In Sec. I,
the dispersion relation for electrostatic beam space-charge
The electrostatic stability of a free-electron laser in whichwaves is derived. In Sec. IV, the combined effects of the
a relativistic electron beam passes through combined wiggle¢oaxial wiggler and axial-guide fields on the rate of change
and axial guide fields has previously been investightecd]. ~ Of axial velocity with energy and on the dispersion relation
It has been shown that electrostatic beam space-chargé€ studied numerically and some conclusions are presented.
waves can be considerably modified by the combined helical
or planar wiggler and axial-guide magnetic fields. Further- Il. QUASI-STEADY-STATE ANALYSIS
more, instability has been shown to exist in these fields for a The static magnetic field in a coaxial magnetic wiggler
certain specific parameter regime. The analysis has been eX b ted b
tended recently to include the effects of a cylindrical metallicV"" °€ fePresented by
waveguide wal[4]. The combined effects of the wall, wig-
gler, and guide field on cyclotronlike waves were studied in
detail.

Some studies of the feasibility of using coaxial wigglers ; or Y
in free-electron lasers have been done recently. Fretiadi been neglected. The radial variationtj, andB,, will also

. s . be neglected, with the restriction that radial displacements of
[5,6] analyzed the performance of a coaxial hybrid iron wig- electron be small in comparison to the wiggle pefioel
gler. The essential parts consist of a central rod and a coaxiag—‘ P ggie p ’

Bo="rBur Sin kyr +2Z(Bog+ By, COsk,2). (1)

Higher spatial harmonics of wiggler wave numbegr have

ring of alternating ferrite and dielectric spacers inserted in W|6.r|§1)' Note that a unllform axm!-gmde magnetic field
og IS included. A cylindrical coordinate system and cgs

uniform static-guide magnetic field. Their studies are di- . : . .
rected toward the design of a short-period wiggler to permitG"jl.us.S"'jm units W'I.I be empl_oyed. The electron velosiy
operation with low beam energy at short wavelengths. Mc-SatISers the equation of motion
Dermottet al.[7] analyzed a wiggler consisting of a coaxial
periodic permanent magnet and transmission line. This de- -9 _ -
vice was proposed for use in a high-power microwave source dt  yomc
to drive a linear collider.

The present paper contains a study of the propagation o¥here—e, m, andc are the electron charge, electromes)
an electrostatic beam space-charge mode in a coaxial wignass, and speed of light, respectively. Lorentz fagtpis a
gler. The analysis is based on an idealized model of th€onstant given by
wiggler magnetic field that neglects spatial harmonics of the
wiggler wave number, radial variation of the magnetic-field Yo=(1-v§/c?) 12, )
magnitude, and waveguide boundary effects. In Sec. Il, the
motion of the electrons in the combined coaxial wiggler andwherev, is the magnitude of the electron velocity
axial-guide magnetic fields is analyzed. Equations for the .
electron velocity and the rate of change of the axial velocity Vo=Tvor+ Ogpt Zv,. 4

dv, -—e
= Vox Bo, (2)

1063-651X/98/52)/22625)/$15.00 57 2262 © 1998 The American Physical Society



57 ELECTROSTATIC BEAM MODES IN A FREE-ELECTR®.. . . 2263
The equations of motion for the velocity components are S ﬁg\fwgg(QSJr 3k\ivﬁ) an
dvor L, CT 205K+ 05505+ 3k )
T =—(Qq+Qy, COSkyZ)vogt+ T "vgy, (5)
A numerical study of®, will be made to determine the
duo variation of the axial velocity with the electron energy.
(o] .
wTEE (Qot+Qyy, coskyz)vg— (Qy SiNKyW2)v o,
Ill. ELECTROSTATIC WAVE ANALYSIS
r—1
' "Vorvos, ©) The device under consideration consists of a coaxial wave
dv guide containing a static magnetic fiddgd. This field, which
0c _ (Qyr SiNKyZ) V- (7) consists of both the wiggler field and the axial-guide field, is

dt approximated by Eq(l). In the unperturbed state, the elec-

tron densityng will be taken as uniform and time indepen-
dent with the finite transverse dimensions of the beam ig-
nored. The unperturbed electron fluid velocity will be
taken as the first-order approximation given by Ec). Ef-
fects of the unperturbed electric fielg} will be neglected.

Here Qq, Q,,, andQ,,, are the relativistic cyclotron fre-
quencies corresponding to the axial-guide fiBlg, the ra-

dial wiggler field amplitudeB,,,, and the axial wiggler field
amplitudeB,,,, respectively, given by

eBy, In the presence of a small electrostatic perturbation, the
Qo:m. (8)  total electric fieldE, magnetic fieldB, electron densityn,
0 and electron fluid velocity may be expressed in the form
eByr
= E=SE, 18
Qur=——1% © (18
eB,, B=By, (19
wim——. (10
Yomc n=ngy+ én, (20
Initial conditions will be chosen so that, in the limit of V=vgt V. 21)

zero wiggler field, there is axial motion at constant velocity

v| but no Larmor motion. To first order in the wiggler field the small perturbation quantities satisfy Gauss'’s law
amplitude, Eqgs(5)—(7) lead to

) V.SE=—4medn, (22)
oo 02— 0y, sink,z (11)
dt? 0¥ 0r =250  Swrl we the linearized continuity equation

dZUO(; 2 2 oon

2 +Qgvoe=— Qv Ky COSK,Z, (12 >t +ngV- 8v+vy- 6n=0, (23
and z=vyt. Solving these equations yields a quasi-steadyand the linearized momentum-transfer equation
state solution for the electron velocity of the form

N aov
vo=1Qoky ‘@ sink,z— vy coskyz+2v, (13)  —5 TVo VOVHV-Vvg
where -1 -2 -1
=—e(yom) [ SE—C “vgvg- SE+CT “OVX By
_ Ok 2 -3
a=—5—> 5. (14 — ¥5C (VX Bg)Vg- 6V]. (29
Qp—kyj

(The second-order correction to the axial velocity componen‘f‘ small-amplitude plane wave with angular frequencand

is %aﬂwrkv’vl cos X,,z.). The root-mean-square value of
may be substituted into E¢3) to obtain
[, (05

Yl
|7 205-kevh)?

— -2

=1—y52 (15)

This equation will be used to compute axial veloaityas a
function of Q,, Qq, ky, and yy. Differentiating it with
respect toy, yields

M: _Z_CZCDO (16)
dyo YoYUl '

where

wave numbek that is propagating in the positivedirection
will be assumed to comprise a perturbation of the form

SE=25E exdi(kz— wt)], (25)
on=6n exfi(kz— wt)], (26)
V= (T80, + 050 g+ 250 ) exdi(kz—wt)].  (27)

Here SE, sh, and &0, are constants, andp, and 80, are
functions ofz approximated by truncated Fourier series of
the form

80, = 80,9+ 60,1 COSKyZ+ S0, SiN K2, (28)
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80 y= 80 go+ O p; COSKyZ+ S0 g SiNk,z. (29

Substitution of the assumed solution into E¢&2) and n

(23) yields
ik SE=4medn, (30)

(0—kv))dn=knydv,. (31)

Additional equations for the wave amplitudes may be ob-
tained from Eq.24) using the orthogonality of the Fourier-

series function and neglecting higher spatial harmonics o ° 0.0 o's 1‘0 1r5 2.0
ky. This procedure leads to nine homogeneous algebrai : ) )
. . . . ~ o ~ ~ ~ Q./¢ kw
equations in nine amplitudesSE, én, dv,, Sv,g, U1, °
8012, OV gg, 6041, and v ). The necessary and sufficient
condition for a nontrivial solution yields FIG. 1. Electron axial velocity component, (divided by the
2 speed of lightc) as a function of the normalized axial-guide mag-
(0— ka)z— wp® (32) netic fieldQ,/ck, for group-1 and group-Il orbits.
= 5,
YoV

The rate of change of the electron axial velocity with
electron energy is given by E{L7). It is proportional to the

(33) function ®, which is equal to unity in the absence of the
wiggler field. Figure 2 illustrates the dependencedgf on

is the nonrelativistic beam plasma frequency. Equatgy  the radial wiggler magnetic field and the axial guide mag-
is the dispersion relation for electrostatic beam space-chargetic fieldBog. For the group | orbits®, is approximately
waves. The functiord deviates from unity due to the com- €qual to unity when th&, field is weak, but rises abruptly
bined effects of the wiggler and axial magnetic fields. ThedsBog increases to the value that results in orbital instability
condition for a nontrivial solution leads to a hierarchy of (£0/ck,=0.69). For group Il orbitsb, is approximately
auxiliary algebraic equations, omitted herein for brevity,equal to unity wherBgg is sufficiently large; it decreases
which will be used to comput® as a function of the system With decreasin@,y, becomes negative whdy, is moder-

where

w,=(4me’ny/m)?

parameters. ate (Qy/ck,<1.1), and approaches zero Bg, approaches
zero. The axial velocity decreases with increasing electron
IV. NUMERICAL STUDY AND CONCLUSIONS energy whendg is negative. Thus, a negative mass regime
exists.

Numerical calculations have been done to illustrate the The dispersion relatiofEq. (32)] for electrostatic beam
combined effects of the coaxial wiggler and axial-guidespace-charge waves contains a fagawhich multiplies the
fields on the variation of the electron axial velocity with
electron energy and on the dispersion relation for beam
space-charge waves. The amplitudes of the radial and axial |
components of the wiggler magnetic fielg, andB,,, were 4.0 1
taken to be 1000 G and 100 G, respectively. Wiggler wave-
length 2m/k,, and lab-frame electron densihy were taken
to be 3 cm and 18 cm 3, respectively. Electron-beam en- 3.0 —
ergy (yo— 1)myc? was taken to be 700 keV, corresponding 4 N
to a Lorentz factoryy of 2.37. The axial-guide magnetic field
Bog Was varied from 0 to 16.9 kG, corresponding to a varia-
tion from 0 to 2 in the normalized relativistic cyclotron fre- P - »
quency(},/ck, associated withBy, .

Figure 1 shows the variation of the axial velocity of the
guasi-steady-state orbits with the axial guide magnetic field - »
for two classes of solutions. Group | orbitse., those for i

which Qqy<k,v,) require for stability that the axial guide 0.0— —
magnetic field not be too large),/ck,<0.69). Unstable - =
group | orbits are indicated by the dashed line. Group I 1.0

orbits (i.e., those for whicf)y>k,v ) are always stable; the ' LA LA DL I B

axial velocity of the electrons increases from zero at zero 0.0 05 1.0 1.5 20
guide field to highly relativistic velocities in a strong guide Q, / ck,

field. The curves shown in Fig. 1 for the coaxial wiggler are

gualitatively the same as the corresponding curves for the

helical wiggler and planar wiggler configuratiofsee Ref. FIG. 2. Factord®, as a function of the normalized axial-guide
[3]). magnetic fieldQq/ck,, for group-l1 and group-II orbits.
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1.5 The magnetiosX B force due to these axial velocity fluctua-

tions in the combined magnetic fields gives rise to velocity
fluctuations in the radial and azimuthal directions. The re-
sulting axial component of magnetic force modifies the axial

1.0 motion. This is indicated by the axial momentum-transfer
\J equation, which may be written in the form
¢
—i(w—kv;) v, exdi(kz—wt)]
0.5

= —e(yom) [ SE—c 2v26E+1,Jexdi(kz— wt)].
(34

Herefz, which is the amplitude of the axial magnetic force
per unit charge, is given by

fz:_(’YOmeil){%Qwr[l_(%)77]51392
FIG. 3. Electron-density factob as a function of the normal- 1 -1¢n
ized axial-guide magnetic fielf,/ck,, for group-I orbits. 8 7 Qurokyvy) 00}, (39
where
square of the plasma frequency. Consequently, the unper-
turbed electron density, times® may be considered to be — 2202022 (36)
an effective electron density for these electrostatic waves. 7= Yol '
This electron-density factor deviates from unity due to the
combined effects of the wiggler and guide fields. Figure 3
shows the variation of with the axial-guide magnetic field - _2 -
Bog for group-I orbits. This electron-density factor is some- f,=v (®-1)sE. 37
what below unity wherB,, is between zero and the value
required for orbital instability. Figure 4 shows the variation The amplitude of the total effective axial force per unit
of ® with Bqg for group-Il orbits. Note thatP approaches charge is
unity asByq approaches zero or when it becomes sufficiently A o . .
large. There are regions in whish is greater than unity as SE—c 2fSE+f,=y [SE+(P-1)5E]. (39
well as less than unity. Singular points exist @Qt/ck,,
=0.67 and 1.19; at each of these poirsfluctuates and The axial momentum-transfer equation, Gauss's law, and the
does not approach a single value. Calculations made WitBontinuity equation then yield the dispersion relatidy.
B,r=B;=1000 G yield results very similar to those shown (32)].

in Fig. r? ical i . f th dificati ¢ When® is greater than unityAf,Z is positive and this mag-
hA physica |(rj1terpretat|on 0 bF equ : :canond 0 .SFl’aC?('j netic force acts in phase with the electric field, thereby in-
charge waves due to the combined wiggler and axial-guidg e ,qing the frequency of the oscillations. The effective

magnetic fields may be described as follows. Electron oscil- : .
lations along the beam axis are driven by the electric field.pla_Sma frequency_lsAthgn mcree_lsed by the fagior. Whep
@ is less than unityf, is negative and opposes the direct

action of the electric field, thereby decreasing the frequency
of the oscillations. If® were to become negative, the effec-
tive plasma frequency would become purely imaginary as
though the electrons have a negative mass. The resulting
1.5 phase shift in axial motion would cause bunching to occur in
® , such a way that the electric field would be enhanced and
negative mass instability would resdilt]. The present cal-
1.0+ culations show that, for a coaxial wiggler, a negative-mass
regime exists. They also show thhtcan be less than unity,
indicating that the magnetic force opposes the direct action
of the electric field. This force does not become sufficiently
large, however, to make the oscillations unstable.
In the analysis of the helical wigglé¢d], two convenient
0.0 T T - approximations are employed, namely, the axial component
00 05 1.0 1.5 2.0 of the wiggler field is neglected and the electron inertia is
neglected in the transverse momentum-transfer equations.
The latter approximation ensures that- kv, does not ap-
pear in the resulting equation fdr. If these same two ap-
FIG. 4. Electron-density factob as a function of the normal- proximations are invoked for the coaxial wiggldr,is given
ized axial-guide magnetic fiel@,/ck,, for group-II orbits. by

It may be expressed in the form

Qo / ek,
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yfﬂirvﬁc‘zméﬂkwv 0?1 quite different_for a coaxial wigglgr. Furthermore, the hel_ical

- 202— (ko) 212 : (39  and planar wigglers have negative-mass electrostatic insta-
0 AhwHI bility regimes unlike the coaxial wiggler. This analysis is

This indicates that, for group-Il orbitsp=1 when, is Pbased on an idealized model. A more sophisticated theory
very large and decreases continuously(hsis decreased; could be developed, in principle, by including additional ef-
e.g.,$=0.985, 0.626, and 0.181 wheh,/ck,=2, 1, and fects that arise from equilibrium electrostatic self-fields, wig-
0.1, respectively. Clearlyp does not become negative. Fig- gler magnetic-field harmonics, radial variations of the wig-
ures 3 and 4 show th@ values when the inertia terms and gler field, and the waveguide walls. Note that the coaxial
axial wiggler field are restored. No negative mass instabilitywiggler proposed by McDermott al. [7] does not contain
is predicted. an axial-guide magnetic field. It is anticipated that Raman

The present analysis indicates tlig and ®, which are free-electron lasers with a coaxial wiggler and an axial-guide
approximately equal for helical and planar wigglers, arefield will ultimately be employed.

db=1
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