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Electrostatic beam modes in a free-electron laser with a coaxial wiggler
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An analysis of the propagation of an electrostatic beam space-charge wave through a coaxial wiggler
magnetic field and an axial-guide magnetic field is presented. Equations for the electron orbital velocity, rate
of change of axial velocity with Lorentz factor, and the dispersion relation are derived. The effects of the
combined wiggler and axial-guide fields on the rate of change of the axial velocity with electron energy and on
the effective electron density in the dispersion relation are studied numerically. The present theory predicts that
electrostatic negative mass instabilities do not exist in a coaxial wiggler.@S1063-651X~98!03802-1#

PACS number~s!: 41.60.Cr, 52.75.Ms
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I. INTRODUCTION

The electrostatic stability of a free-electron laser in wh
a relativistic electron beam passes through combined wig
and axial guide fields has previously been investigated@1–3#.
It has been shown that electrostatic beam space-ch
waves can be considerably modified by the combined he
or planar wiggler and axial-guide magnetic fields. Furth
more, instability has been shown to exist in these fields fo
certain specific parameter regime. The analysis has been
tended recently to include the effects of a cylindrical meta
waveguide wall@4#. The combined effects of the wall, wig
gler, and guide field on cyclotronlike waves were studied
detail.

Some studies of the feasibility of using coaxial wiggle
in free-electron lasers have been done recently. Freundet al.
@5,6# analyzed the performance of a coaxial hybrid iron w
gler. The essential parts consist of a central rod and a coa
ring of alternating ferrite and dielectric spacers inserted i
uniform static-guide magnetic field. Their studies are
rected toward the design of a short-period wiggler to per
operation with low beam energy at short wavelengths. M
Dermottet al. @7# analyzed a wiggler consisting of a coaxi
periodic permanent magnet and transmission line. This
vice was proposed for use in a high-power microwave sou
to drive a linear collider.

The present paper contains a study of the propagatio
an electrostatic beam space-charge mode in a coaxial
gler. The analysis is based on an idealized model of
wiggler magnetic field that neglects spatial harmonics of
wiggler wave number, radial variation of the magnetic-fie
magnitude, and waveguide boundary effects. In Sec. II,
motion of the electrons in the combined coaxial wiggler a
axial-guide magnetic fields is analyzed. Equations for
electron velocity and the rate of change of the axial veloc
571063-651X/98/57~2!/2262~5!/$15.00
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component with the Lorentz factor are derived. In Sec.
the dispersion relation for electrostatic beam space-cha
waves is derived. In Sec. IV, the combined effects of t
coaxial wiggler and axial-guide fields on the rate of chan
of axial velocity with energy and on the dispersion relati
are studied numerically and some conclusions are presen

II. QUASI-STEADY-STATE ANALYSIS

The static magnetic field in a coaxial magnetic wigg
will be represented by

B05 r̂Bwr sin kwr 1 ẑ~B0g1Bwz coskwz!. ~1!

Higher spatial harmonics of wiggler wave numberkw have
been neglected. The radial variation ofBwr andBwz will also
be neglected, with the restriction that radial displacement
an electron be small in comparison to the wiggle period~i.e.,
kw udr u!1!. Note that a uniform axial-guide magnetic fiel
B0g is included. A cylindrical coordinate system and c
Gaussian units will be employed. The electron velocityv0
satisfies the equation of motion

dv0

dt
5

2e

g0mc
v03B0 , ~2!

where2e, m, andc are the electron charge, electron~rest!
mass, and speed of light, respectively. Lorentz factorg0 is a
constant given by

g05~12v0
2/c2!21/2, ~3!

wherev0 is the magnitude of the electron velocity

v05 r̂v0r1ûv0u1 ẑv0z . ~4!
2262 © 1998 The American Physical Society
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57 2263ELECTROSTATIC BEAM MODES IN A FREE-ELECTRON . . .
The equations of motion for the velocity components are

dv0r

dt
52~V01Vwz coskwz!v0u1r 21v0u

2 , ~5!

dv0o

dt
5~V01Vwz coskwz!v0r2~Vwr sin kwz!v0z

-r 21v0rv0u , ~6!

dv0c

dt
5~Vwr sin kwz!v0u . ~7!

Here V0 , Vwr , and Vwz are the relativistic cyclotron fre
quencies corresponding to the axial-guide fieldB0g , the ra-
dial wiggler field amplitudeBwr , and the axial wiggler field
amplitudeBwz , respectively, given by

V05
eB0g

g0mc
, ~8!

Vwr5
eBwr

g0mc
, ~9!

Vwz5
eBwz

g0mc
. ~10!

Initial conditions will be chosen so that, in the limit o
zero wiggler field, there is axial motion at constant veloc
v i but no Larmor motion. To first order in the wiggler fiel
amplitude, Eqs.~5!–~7! lead to

d2v0r

dt2
1V0

2v0r5V0Vwrv i sin kwz, ~11!

d2v0u

dt2
1V0

2v0u52Vwrv i
2kw coskwz, ~12!

and z5v it. Solving these equations yields a quasi-stea
state solution for the electron velocity of the form

v05 r̂V0kw
21a sin kwz2 ûv ia coskwz1 ẑv i , ~13!

where

a5
Vwrkwv i

V0
22kw

2 v i
2 . ~14!

~The second-order correction to the axial velocity compon
is 1

4 aVwrkw
21 cos 2kwz.!. The root-mean-square value ofv0

may be substituted into Eq.~3! to obtain

v i
2

c2 F11
Vwr

2 ~V0
21kw

2 v i
2

2~V0
22kw

2 v i
2!2 G512g0

22. ~15!

This equation will be used to compute axial velocityv i as a
function of Vwr , V0 , kw , and g0 . Differentiating it with
respect tog0 yields

dv i

dg0
5

c2F0

g0g i
2v i

, ~16!

where
-

t

F0512
g i

2Vwr
2 V0

2~V0
213kw

2 v i
2!

2~V0
22kw

2 v i
2!31Vwr

2 V0
2~V0

213kw
2 v i

2!
. ~17!

A numerical study ofF0 will be made to determine the
variation of the axial velocity with the electron energy.

III. ELECTROSTATIC WAVE ANALYSIS

The device under consideration consists of a coaxial w
guide containing a static magnetic fieldB0 . This field, which
consists of both the wiggler field and the axial-guide field,
approximated by Eq.~1!. In the unperturbed state, the ele
tron densityn0 will be taken as uniform and time indepen
dent with the finite transverse dimensions of the beam
nored. The unperturbed electron fluid velocityv0 will be
taken as the first-order approximation given by Eq.~13!. Ef-
fects of the unperturbed electric fieldE0 will be neglected.

In the presence of a small electrostatic perturbation,
total electric fieldE, magnetic fieldB, electron densityn,
and electron fluid velocityv may be expressed in the form

E5dE, ~18!

B5B0 , ~19!

n5n01dn, ~20!

v5v01dv. ~21!

The small perturbation quantities satisfy Gauss’s law

¹•dE524pedn, ~22!

the linearized continuity equation

]dn

]t
1n0¹•dv1v0•dn50, ~23!

and the linearized momentum-transfer equation

]dv

]t
1v0•¹dv1dv•¹v0

52e~g0m!21@dE2c22v0v0•dE1c21dv3B0

2g0
2c23~v03B0!v0•dv#. ~24!

A small-amplitude plane wave with angular frequencyw and
wave numberk that is propagating in the positivez direction
will be assumed to comprise a perturbation of the form

dE5 ẑdÊ exp@ i ~kz2vt !#, ~25!

dn5dn̂ exp@ i ~kz2vt !#, ~26!

dv5~ r̂d v̂ r1ûd v̂u1 ẑd v̂z!exp@ i ~kz2vt !#. ~27!

Here dÊ, dn̂, andd v̂z are constants, andd v̂ r and d v̂u are
functions ofz approximated by truncated Fourier series
the form

d v̂ r5d v̂ r01d v̂ r1 coskwz1d v̂ r2 sin kwz, ~28!
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d v̂u5d v̂u01d v̂u1 coskwz1d v̂u2 sin kwz. ~29!

Substitution of the assumed solution into Eqs.~22! and
~23! yields

ikdÊ54pedn̂, ~30!

~v2kv i!dn̂5kn0d v̂z . ~31!

Additional equations for the wave amplitudes may be o
tained from Eq.~24! using the orthogonality of the Fourier
series function and neglecting higher spatial harmonics
kw . This procedure leads to nine homogeneous algeb
equations in nine amplitudes~dÊ, dn̂, d v̂z , d v̂ r0 , d v̂ r1 ,
d v̂ r2 , d v̂u0 , d v̂u1 , andd v̂u2!. The necessary and sufficien
condition for a nontrivial solution yields

~v2kv i!
25

vb
2F

g0g i
2 , ~32!

where

vb5~4pe2n0 /m!1/2 ~33!

is the nonrelativistic beam plasma frequency. Equation~32!
is the dispersion relation for electrostatic beam space-ch
waves. The functionF deviates from unity due to the com
bined effects of the wiggler and axial magnetic fields. T
condition for a nontrivial solution leads to a hierarchy
auxiliary algebraic equations, omitted herein for brevi
which will be used to computeF as a function of the system
parameters.

IV. NUMERICAL STUDY AND CONCLUSIONS

Numerical calculations have been done to illustrate
combined effects of the coaxial wiggler and axial-gui
fields on the variation of the electron axial velocity wi
electron energy and on the dispersion relation for be
space-charge waves. The amplitudes of the radial and a
components of the wiggler magnetic fieldsBwr andBwz were
taken to be 1000 G and 100 G, respectively. Wiggler wa
length 2p/kw and lab-frame electron densityn0 were taken
to be 3 cm and 1012 cm23, respectively. Electron-beam en
ergy (g021)m0c2 was taken to be 700 keV, correspondin
to a Lorentz factorg0 of 2.37. The axial-guide magnetic fiel
B0g was varied from 0 to 16.9 kG, corresponding to a var
tion from 0 to 2 in the normalized relativistic cyclotron fre
quencyV0 /ckw associated withB0g .

Figure 1 shows the variation of the axial velocity of th
quasi-steady-state orbits with the axial guide magnetic fi
for two classes of solutions. Group I orbits~i.e., those for
which V0,kwv i! require for stability that the axial guid
magnetic field not be too large (V0 /ckw,0.69). Unstable
group I orbits are indicated by the dashed line. Group
orbits ~i.e., those for whichV0.kwv i! are always stable; the
axial velocity of the electrons increases from zero at z
guide field to highly relativistic velocities in a strong guid
field. The curves shown in Fig. 1 for the coaxial wiggler a
qualitatively the same as the corresponding curves for
helical wiggler and planar wiggler configurations~see Ref.
@3#!.
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The rate of change of the electron axial velocity wi
electron energy is given by Eq.~17!. It is proportional to the
function F0 which is equal to unity in the absence of th
wiggler field. Figure 2 illustrates the dependence ofF0 on
the radial wiggler magnetic field and the axial guide ma
netic fieldB0g . For the group I orbits,F0 is approximately
equal to unity when theB0g field is weak, but rises abruptly
asB0g increases to the value that results in orbital instabi
(V0 /ckw>0.69). For group II orbits,F0 is approximately
equal to unity whenB0g is sufficiently large; it decrease
with decreasingB0g , becomes negative whenB0g is moder-
ate (V0 /ckw,1.1), and approaches zero asB0g approaches
zero. The axial velocity decreases with increasing elect
energy whenF0 is negative. Thus, a negative mass regim
exists.

The dispersion relation@Eq. ~32!# for electrostatic beam
space-charge waves contains a factorF which multiplies the

FIG. 1. Electron axial velocity componentv i ~divided by the
speed of lightc! as a function of the normalized axial-guide ma
netic fieldV0 /ckw for group-I and group-II orbits.

FIG. 2. FactorF0 as a function of the normalized axial-guid
magnetic fieldV0 /ckw for group-I and group-II orbits.
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square of the plasma frequency. Consequently, the un
turbed electron densityn0 timesF may be considered to b
an effective electron density for these electrostatic wav
This electron-density factor deviates from unity due to
combined effects of the wiggler and guide fields. Figure
shows the variation ofF with the axial-guide magnetic field
B0g for group-I orbits. This electron-density factor is som
what below unity whenB0g is between zero and the valu
required for orbital instability. Figure 4 shows the variatio
of F with B0g for group-II orbits. Note thatF approaches
unity asB0g approaches zero or when it becomes sufficien
large. There are regions in whichF is greater than unity as
well as less than unity. Singular points exist atV0 /ckw
>0.67 and 1.19; at each of these pointsF fluctuates and
does not approach a single value. Calculations made
Bwr5Bwz51000 G yield results very similar to those show
in Fig. 4.

A physical interpretation of the modification of spac
charge waves due to the combined wiggler and axial-gu
magnetic fields may be described as follows. Electron os
lations along the beam axis are driven by the electric fie

FIG. 3. Electron-density factorF as a function of the normal
ized axial-guide magnetic fieldV0 /ckw for group-I orbits.

FIG. 4. Electron-density factorF as a function of the normal
ized axial-guide magnetic fieldV0 /ckw for group-II orbits.
er-

s.
e
3

-

y

th

e
il-
.

The magneticv3B force due to these axial velocity fluctua
tions in the combined magnetic fields gives rise to veloc
fluctuations in the radial and azimuthal directions. The
sulting axial component of magnetic force modifies the ax
motion. This is indicated by the axial momentum-trans
equation, which may be written in the form

2 i ~v2kv i!d v̂z exp@ i ~kz2vt !#

52e~g0m!21@dÊ2c22v i
2dÊ1 f̂ z#exp@ i ~kz2vt !#.

~34!

Here f̂ z , which is the amplitude of the axial magnetic forc
per unit charge, is given by

f̂ z52~g0me21!$ 1
2 Vwr@12~ 1

4 !h#d v̂u2

1 1
8 hVwrV0~kwv i!

21d v̂ r1%, ~35!

where

h5g0
2v i

2c22a2. ~36!

It may be expressed in the form

f̂ z5g i
22~F21!dÊ. ~37!

The amplitude of the total effective axial force per un
charge is

dÊ2c22v i
2dÊ1 f̂ z5g i

22@dÊ1~F21!dÊ#. ~38!

The axial momentum-transfer equation, Gauss’s law, and
continuity equation then yield the dispersion relation@Eq.
~32!#.

WhenF is greater than unity,f̂ z is positive and this mag-
netic force acts in phase with the electric field, thereby
creasing the frequency of the oscillations. The effect
plasma frequency is then increased by the factorAF. When
F is less than unity,f̂ z is negative and opposes the dire
action of the electric field, thereby decreasing the freque
of the oscillations. IfF were to become negative, the effe
tive plasma frequency would become purely imaginary
though the electrons have a negative mass. The resu
phase shift in axial motion would cause bunching to occu
such a way that the electric field would be enhanced
negative mass instability would result@1#. The present cal-
culations show that, for a coaxial wiggler, a negative-m
regime exists. They also show thatF can be less than unity
indicating that the magnetic force opposes the direct ac
of the electric field. This force does not become sufficien
large, however, to make the oscillations unstable.

In the analysis of the helical wiggler@1#, two convenient
approximations are employed, namely, the axial compon
of the wiggler field is neglected and the electron inertia
neglected in the transverse momentum-transfer equati
The latter approximation ensures thatv2kv i does not ap-
pear in the resulting equation forF. If these same two ap
proximations are invoked for the coaxial wiggler,F is given
by
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F>12
g i

2Vwr
2 v i

2c22@V0
21~kwv i!

2#

2@V0
22~kwv i!

2#2 . ~39!

This indicates that, for group-II orbits,F>1 when V0 is
very large and decreases continuously asV0 is decreased
e.g.,F>0.985, 0.626, and 0.181 whenV0 /ckw52, 1, and
0.1, respectively. Clearly,F does not become negative. Fig
ures 3 and 4 show theF values when the inertia terms an
axial wiggler field are restored. No negative mass instabi
is predicted.

The present analysis indicates thatF0 and F, which are
approximately equal for helical and planar wigglers, a
y

e

quite different for a coaxial wiggler. Furthermore, the helic
and planar wigglers have negative-mass electrostatic in
bility regimes unlike the coaxial wiggler. This analysis
based on an idealized model. A more sophisticated the
could be developed, in principle, by including additional e
fects that arise from equilibrium electrostatic self-fields, w
gler magnetic-field harmonics, radial variations of the w
gler field, and the waveguide walls. Note that the coax
wiggler proposed by McDermottet al. @7# does not contain
an axial-guide magnetic field. It is anticipated that Ram
free-electron lasers with a coaxial wiggler and an axial-gu
field will ultimately be employed.
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